НОРМА ЗАКОНОДАТЕЛЬНОЙ МЕТРОЛОГИИ

NML 06-08:2023 «Термометры жидкостные стеклянные, в том числе электроконтактные. Технические и метрологические требования. Методика поверки»

І. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

1. Настоящая норма законодательной метрологии (в дальнейшем - норма) устанавливает технические и метрологические требования к термометрам жидкостным стеклянным, в том числе электроконтактным (далее - термометры) предназначенные измерениям в областях общественного интереса. Норма применяется при проведении испытаний в целях утверждения типа, первичной, периодической и послеремонтной поверок в соответствии с требованиями Постановления Правительства № 1042/2016 г. об утверждении Официального перечня средств измерения и измерений, подлежащих законодательному метрологическому контролю.

Настоящая норма применяется к термометрам жидкостным стеклянным с интервалом измерения температур от минус 80 до плюс 500 °C.

ІІ. НОРМАТИВНЫЕ ССЫЛКИ

Закон о метрологии № 19/2016 г.

SM ISO/IEC Ghid 99:2017 «Международный словарь по метрологии. Основные и общие понятия и соответствующие термины (VIM)».

Постановление Правительства № 1042/2016г. об утверждении Официального перечня средств измерения и измерений, подлежащих законодательному метрологическому контролю.

OIML R 133 Термометры жидкостные стеклянные

III. ТЕРМИНОЛОГИЯ И АББРЕВИАТУРЫ

2. Для верного толкования настоящей нормы используются термины и определения согласно Закону о метрологии № 19/2016г., SM ISO/IEC Ghid 99:2017 и следующие дополнения:

ЕМТ – максимально допустимая погрешность.

IV. ТЕХНИЧЕСКИЕ И МЕТРОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ

- **3.** Термометры должны соответствовать техническим и метрологическим требованиям в соответствии с OIML R 133 и настоящей нормы.
 - **4.** Термометры должны быть градуированы в градусах Цельсий (°С).
- **5.** Резервуар не должен содержать куски стекла или другие загрязнения, а на самом резервуаре не должно быть царапин, утолщений или пузырьков воздуха, которые могут повлиять на надёжность термометра.
- **6.** Капилляр должен иметь постоянный диаметр по всей длине, без неровностей и не содержать чужеродных материалов (маленьких частиц стекла). Верхняя часть капилляра может быть

расширена — что представляет собой расширительную камеру в виде груши, эквивалентной повышению мениска жидкостного столба минимум на 20 °C.

- **7.** Жидкость в резервуаре должна быть чистой. Жидкостный столб в капилляре должен двигаться плавно без задержек, при любом изменении температуры.
- **8.** Корпус термометра по всей длине не должен иметь царапин, трещин, утолщений, пузырьков воздуха или иных дефектов, которые могут привести к потере прозрачности или к деформации шкалы, цифр или мениска термометрической жидкости.
- **9.** Капилляр должен быть ровным по всей длине и находиться по центру градуированной шкалы. Расстояние от капилляра до шкалы должно быть не более 1,0 мм. Соединение пластины с защитной трубкой термометра выполнено таким образом, чтобы пластина свободно расширялась в продольном направлении.
 - 10. Термометры конструктивно должны иметь массивный или трубчатый капилляр.
- **11.** Абсолютные максимально допустимые погрешности термометров с частичным или полным погружением в зависимости от диапазона измерений температуры и класса точности, не должны превышать погрешности, указанные в таблицах 1-4.

Максимально допустимые погрешности термометров с полным погружением.

Таблица 1

Класс	Диапазон температур, °С							
точности	от – 80	от – 38	от 0	от + 50	от +100	от +200	от +300	от +360
(EMT, °C)	до -38	до 0	до +50	до +100	до +200	до +300	до +360	до +500
$A (\pm 0,1)$		P	P	P				
B (± 0.2)		P	P	P	P			
$C (\pm 0.5)$		P	P	P	P	P		
$D (\pm 1,0)$		P	P	P	P	P		
$E(\pm 2,0)$	О	P/O	P/O	P/O	P/O	P	P	
$F(\pm 5.0)$	O	P/O	P/O	P/O	P/O	P	P	P

Р – термометр ртутный

Таблица 2

							таолица 2			
	Диапазон температур, °С									
Have warren	EMT, °C									
Цена деления	ot - 80	от – 38	от 0	ot + 100	ot + 200	от +300	от +360			
	до -38	до 0	до + 100	до +200	до +300	до +360	до +500			
(± 0.1)	$\pm 0,3$	$\pm 0,3$	±0,2	$\pm 0,3$	±0,5	±1,0	±1,0			
(± 0.2)	± 0,4	±0,4 (±0,4)*	±0,3 (±0,4)*	±0,4	±0,8	±1,0	-			
(± 0.5)	±0,5 (±1,0)*	±0,5 (±1,0)*	±0,5 (±1,0)*	±0,5	±1,0	±1,0	1			
(± 1.0)	$\pm 1.0 \ (\pm 2.0)^*$	$\pm 1,0 \ (\pm 1,0)^*$	±1,0	$\pm 1.0 \ (\pm 2.0)^*$	±2,0	±2,0	±3,0			
(± 2.0)	±2,0 (±3,0)*	±2,0 (±2,0)*	±2,0 (±2,0)*	±2,0 (±3,0)*	±2,0	±3,0	±4,0			
(± 5.0)	-	-	±5,0	±5,0	±5,0	±10,0	±10,0			
(± 10.0)	-	-	±10,0	±10,0	±10,0	±10,0	±10,0			

О – термометр с органической жидкостью

Максимально допустимые погрешности термометров с частичным погружением.

Таблица 3

Класс	Диапазон температур, °С							
точности	от – 80	от – 38	от 0	от + 50	от + 100	от +200		от +360
(EMT, °C)	до -38	до 0	до +50	до +100	до +200	до +300	до +360	до +500
$A (\pm 0,1)$								
B (± 0.2)			P	P				
$C (\pm 0.5)$		P	P	P	P			
$D(\pm 1,0)$		P	P	P	P	P		
$E(\pm 2,0)$		P	P	P	P	P	P	
$F(\pm 5.0)$	О	P/O	P/O	P/O	P/O	P	P	P

Р – термометр ртутный

Таблица 4

							таолица ч		
	Диапазон температур, °С								
11	EMT, °C								
Цена деления	от – 80	от – 38	от 0	от +100	от +200	от +300	от +360		
	до -38	до 0	до + 100	до +200	до +300	до +360	до +500		
(± 0.1)	-	±0,3	±0,2	±0,4	-	-	-		
(± 0.2)	-	±0,3	±0,3	±0,4	±1,0	-	-		
(± 0.5)	$(\pm 1,0)^*$	$\pm 1,0$ $(\pm 1,0)^*$	±1,0 (±1,0)*	±1,0	±2,0	-	-		
(± 1.0)	$(\pm 2,0)^*$	$\pm 1,0$ $(\pm 1,0)^*$	±1,0 (±1,0)*	±2,0 (±2,0)*	±2,0	±3,0	±5,0		
(± 2.0)	-	_	±2,0 (±2,0)*	±2,0 (±3,0)*	±2,0	±3,0	±5,0		
(± 5.0)	-	-	±5,0	±5,0	±5,0	±10,0	±10,0		
(± 10.0)	-	-	±10,0	±10,0	±10,0	±10,0	±10,0		

V. ФОРМЫ ЗАКОНОДАТЕЛЬНОГО МЕТРОЛОГИЧЕСКОГО КОНТРОЛЯ

12. Объём и последовательность проведения операции при утверждении типа, первичной, периодической и послеремонтной поверок, должны соответствовать таблице 5. Программа метрологических испытаний с целью утверждения типа составляется в соответствии с настоящей нормой и применимых стандартов.

Таблица 5

Наименование операции	Операция/№ пункта из	Формы законодательного метрологического контроля				
	главы XI	X 7	Поверка			
	"Проведение проверки"	Утверждение типа		периодическая	после ремонта	
Внешний осмотр	23	да	да	да	да	

О – термометр с органической жидкостью

Определение абсолютной					
погрешности измерения	24	да	да	да	да
температуры					

- **13.** Операции поверки проводятся аккредитованными и уполномоченными лабораториями в соответствующей области согласно Закону о метрологии № 19/2016 г.
- **14.** В случае, если термометры не соответствуют хотя бы одному требованию, указанному в Таблице 5, поверка прекращается и считается, что термометры не соответствуют требованию настоящей нормы и не могут применяться в области общественного интереса.

VI. ЭТАЛОНЫ И ОБОРУДОВАНИЕ

15. Поверку проводят рабочими эталонами, указанными в таблице 3.

Таблина 6

№ пункта из главы XI "Проведение проверки	Наименование рабочего эталона или вспомогательного измерительного оборудования	Основные метрологические и технические характеристики.	Нормативный документ, который регламентирует технические требования
24	Эталонные термометры сопротивления из платины	Диапазон температур: $(-200 \div 660)$ °C; RPTA = $(25,5 \pm 0,5)$ Ω ; Неопределённость измерений: $(6 \div 20)$ мК	-
24	Термостат	Диапазон температур: (-80÷110) °C; Стабильность – 6 мК; Однородность при 0 °C – 12 мК	-
24	Термостат	Диапазон температур: (35÷300) °C; Стабильность – 5 мК; Однородность – 7 мК	-
24	Калибратор температуры	Диапазон температур: $(100 \div 500)$ °C; Стабильность $-0,1$ °C; Неопределённость измерений $-0,15$ °C	-
24	Аппарат для измерения температуры, давления и влажности	Неопределённость измерений: Влажность: ± 0,6 % в диапазоне от 0 % до 40 %; ± 1,0% в диапазоне от 40 % до 97 %; Температура: ± 0,1 °C; Давление: ± 0,07 гПа	-

Жидкость термостата должна соответствовать следующие требования:

- быть как можно менее вязким;
- не вызывать коррозий;
- не распадаться при высоких температурах;
- верхний рабочий температурный предел 25 °C ниже температуры воспламенения.

16. Допускается использование других рабочих эталонов, чьи технические и метрологические характеристики аналогичны или лучше тех, что указаны в Таблице 6 и которые были эталонированы в установленном порядке.

VII. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПЕРСОНАЛА

17. К проведению поверки допускаются лица с продемонстрированной компетентностью в данной области измерений.

VIII. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

18. При проведении поверки должны соблюдаться правила техники безопасности в лаборатории и требования технической документации на термометры.

ІХ. УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

19. При проведении поверки должны соблюдаться следующие условия:

1) температура окружающей среды,	, °C	$23,0 \pm 3,0;$
----------------------------------	------	-----------------

2) относительная влажность воздуха, % 50,0 ± 30;

3) атмосферное давление, кПа 84.7 ± 106.0 ;

4) стабильность температуры во время измерений, $^{\circ}$ C \pm 1,0

Х. ПОДГОТОВКА К ПОВЕРКЕ

- **20.** Перед выполнением поверки термометры должны быть подготовлены в соответствии с технической документацией производителя и должны быть выдержаны при температуре 20±5 °C минимум 24 часа.
- 21. Термометры стеклянные ртутные должны быть выдержаны вертикально, до выполнения поверки, в течении не менее 24 часов.
- **22.** Во избежание поломки термометров, вызванной термическим шоком, термометры плавно нагреваются до достижения температуры поверки.

ХІ. ВЫПОЛНЕНИЕ ПОВЕРКИ

23. Внешний осмотр

- 1) При внешнем осмотре должно быть установлено соответствие термометров следующим требованиям:
- а) на корпусе термометров и составных частях не должно быть механических повреждений, трещин;
- b) капиллярная трубка не должна иметь видимых изменений размеров диаметра или содержать чужеродные материалы, такие как осколки стекла;
- с) градуировка должна быть нестираемой с однородным интервалом (или адаптированной к расширению термометрической жидкости);
- d) значения температуры должны быть ясными, разборчивыми и в соответствующем порядке и соответствовать правильной линии шкалы;
 - е) термометрическая жидкость должна быть непрерывной;
 - f) на задней части градированной шкалы должны быть нанесены следующие надписи:
 - тип термометра;
 - наименование или товарный знак изготовителя;
 - серийный номер термометра и год производства;
 - класс точности;

- глубина погружения (при необходимости);
- символ единицы измерения (°C).
- 2) Результаты внешней проверки считаются положительными, если термометр отвечает требованиям, указанным в части 1) настоящего пункта.
 - 24. Определение абсолютных погрешностей измерения температуры
- 1) Определение абсолютной погрешностей измерения температуры производится для трех значений шкалы. Эти значения должны включать макс., мин. и значение, находящееся в пределы шкалы.
 - 2) Устанавливают термостат на минимальную температуру шкалы поверяемого термометра.
 - 3) Выжидают, пока температура в термостате стабилизируется.
- 4) Помещают поверяемый термометр в термостат и эталонный термометр в зависимости от степени погружения:
- если термометр полного погружения, он должен быть погружен в термостат таким образом, чтобы мениск находился на 10 мм выше поверхности жидкости в термостате;
- если термометр частичного погружения, то он погружается на заданную глубину (глубину погружения) и выдерживается в течении выполнения измерения.
- 5) термометр выдерживается погруженным в течение 2-3 мин., после чего одновременно считываются показания поверяемого и эталонного термометров. Перед считыванием показаний к термометру аккуратно прикасаются, с целью убрать возможную блокировку жидкости в капилляре. Показания считываются на уровне горизонтали, касательной к мениску, таким образом, чтобы линия шкалы в точке считывания была прямой. Считывание показаний ртутных термометров производится относительно кончика выпуклого мениска, а термометров с органической жидкостью относительно самой нижней точке вогнутого мениска. Считываемые значения указываются в протоколе.
 - 6) Измерения, указанные в частях 4) 5) повторяются 3 раза.
 - 7) Вычисляется среднеарифметическое измеренных значений по формулам:

$$T_{M_{med}} = \frac{T_{M_1} + T_{M_2} + T_{M_3}}{3} \tag{1}$$

гле.

 T_{M} — измеренное значение поверяемым термометром;

$$T_{E_{med}} = \frac{T_{E_1} + T_{E_2} + T_{E_3}}{3} \tag{2}$$

где,

 $T_{\rm E}$ — измеренное значение эталонным термометром.

8) Вычислить абсолютную погрешность измерения температуры Δ по формуле:

$$\Delta = T_{M_{med}} - T_{E_{med}} \tag{3}$$

- 9) Результаты поверки считаются положительными, если абсолютная погрешность, полученная в пункте 8), не превышает ЕМТ, указанную в таблице 1, 2, 3 или 4.
 - 10) Измерения, указанные в частях 2) 9), повторяются для значений, указанных в части 1).

XII. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ЗАКОНОДАТЕЛЬНОГО МЕТРОЛОГИЧЕСКОГО КОНТРОЛЯ

- **25.** Результаты метрологической поверки заносятся в протокол поверки, который должен содержать как минимум следующую информацию:
 - 1) наименование, тип и серийный № термометра;
 - 2) заявитель;
 - 3) используемые эталоны;
 - 4) условия окружающей среды;
 - 5) измеренные значения;
 - 6) абсолютные погрешности;
 - 7) максимально допустимая погрешность (ЕМТ).
- **26.** В случае признания средства измерений годным к использованию, выдаётся свидетельство о поверке в соответствии с Постановлением Правительства № 1042/2016, Приложение 2.
- **27.** В случае признания средства измерения негодным к использованию, выдается свидетельство о непригодности в соответствии с Постановлением Правительства № 1042/2016 г., приложение 2.